深度学习技术,特别是神经网络,已经在图像和语音跟踪领域取得了不小的进展。这些技术可以应用于物联网设备,实现更加智能化的交互和控制。物联网、人工智能和大数据的融合正在开启一个智能化的新纪元。这种融合不仅推动了技术革新,还为各行各业带来了深刻的变革。随着技术的不断发展,这一融合将推动智能家居、智能城市、智能制造、智慧医疗等领域的发展,极大地提升人们的生活质量和工作效率。未来,物联网、人工智能和大数据的深度融合将为企业和个人带来更多的机遇和挑战,我们需要不断学习和探索新技术,以充分利用这些技术创造更美好的未来。特殊目标的识别精度如何提高?成都智慧交通AI智能算法分析
例如是飞过来的杂物,还是闯入的人或者动物,如果摄像头能够智能识别,那么就可以实现上述目的。而要实现这样的功能,一个很简单的方法就是在传统摄像头的基础上植入高性能的AI图像处理板。图像处理板通过定制接口和摄像头连接,在目标识别算法的赋能下,就能够对摄像头获取的物体进行AI识别分类,从而对摄像头发出指令是否锁定跟踪目标,从而转动摄像头。成都慧视开发的Viztra-ME025图像处理板,是慧视光电采用瑞芯微RK3399pro芯片开发而成的高性能板卡,芯片基于双Cortex-A72+四Cortex-A53大小核CPU结构;CPU主频1.8GHz;高性能+强大的算力3.0TOPS,GPU采用Mali-T860MP4,支持1080P视频编解码、H.265硬解码。成都智慧视觉AI智能智慧眼图像标注是一项繁琐的工作。
成都慧视开发Viztra-HE030图像处理板就十分合适,工业级芯片RK3588的加持下,至高输出6.0TOPS的算力,足以满足工业检测需求。而像背景稍微简单的地面人、车,湖面船舶的检测,如果不是特殊需求,选择性能适中的Viztra-ME025图像处理板就能够满足需求。板卡采用国内智能AI芯片RK3399Pro,基于双Cortex-A72+四Cortex-A53大小核CPU结构;CPU主频1.8GHz;能够输出3.0TOPS的算力,在我司高精尖目标识别算法的赋能下,就能够实现人车船的检测识别。
在这些小型飞行器自主避障飞行中,算法的性能很关键,他能帮助规划路线,识别障碍物。为了满足这样小型化飞行器的需求,成都慧视开发了同样是小型化体积的AI图像处理板Viztra-LE026,这块板卡采用了瑞芯微高性能芯片RV1126,体积小、功耗低,用在小型无人机上不会过多增加其负担。而4和处理器,支持INT8和INT16,能够输出比较大2.0TOPS的算力,足以满足在复杂环境中快速进行识别检测。
此外,成都慧视推出的深度学习算法开发平台还能够针对算法进行模型训练,通过大量的训练来提升算法性能。 如何提升无人机识别跟踪的精度?
在很长一段时间内,传统的粮库害虫检查方法是依靠人工巡检,用肉眼观察,逐仓筛查的方法,这种方法覆盖面不足且效率低下,筛查一次将耗费工作人员的大量时间精力。随着技术的发展,AI化的筛查逐步采用,通过算法的AI识别实现自动化筛查。方法基于高像素高清摄像机,实时远程监控粮库,一旦发现害虫就能够立即向管理平台发出告警,有效降低巡检成本和压力,提升工作效率。这之中,实现AI识别处理的传感器同样重要,面对复杂的粮库环境,一个高性能能够快速处理数据的图像处理板是关键。如何提升小型飞行器识别跟踪的精度?成都智慧监狱AI智能视觉
项目外场测试可以利用SpeedDP进行快速自动标注。成都智慧交通AI智能算法分析
利用图像处理技术实现导弹的远程打击是一项运用了比较长时间的技术,相比于现代化的电子控制,它具备低受干扰的特点,特别是无人机在军备领域的广泛应用,图像处理的作用重新受到重视。远程打击时,需要对整个弹的识别能力进行深度学习训练,不断的训练能够让AI更加聪明,让AI知道该打击什么,从而提升打击精度。在前期的试验印证阶段,需要进行大量反复的试验训练,通过在导弹前端植入导引头,给导弹装上眼睛,可以实时记录导弹打出后的视频画面,然后将大量的视频数据采集到一起用于分析改进。成都智慧交通AI智能算法分析
成都慧视光电技术有限公司免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。